
Alan O’Donohoe

Teaching Computing
with Python

• Inspire & engage digital makers
• Support teaching of Computing
• Promote safe, secure & appropriate use of technology

exa.foundation is part of Exa Education. Find out more at www.exa.education

.resources

Teaching Computing
with Python

Alan O’Donohoe
@teknoteacher

Teaching Programming with Python-Alan O'Donohoe

The major strengths that set Python apart from these, is that Python is a serious software

developer’s language but has the distinct advantage in that it is an ideal language in which to learn.

Python is particularly suited to handling and manipulating large quantities of data. The fact that

Python was chosen for maintaining Google’s search quality and YouTube searches demonstrates

this programming language’s potential to scale to really big projects.

Guido Van Rossum, the pioneer behind Python presented an initiative in 1999 called Computer

Programming for Everybody, in which he defined his goals for Python:

� an easy and intuitive language just as powerful as major competitors

� open source, so anyone can contribute to its development

� code that is as understandable as plain English

� suitability for everyday tasks, allowing for short development times

If you have not read the 'Computer Programming for Everybody' paper, I recommend that you do.

Python is free to download, works on PC, Mac, Linux and Raspberry Pi computers. It seems to be

more forgiving regarding syntax errors than many the vast majority of other languages.

Programming with Python is a feature of many Computing Science degree courses and was

purposely created to facilitate learning to program.

Python is available to download from the Python website http://www.python.org/and documentation

is available here including tutorials http://docs.python.org/py3k/

There is a huge range of materials available online to learn programming with Python on this page

here http://wiki.python.org/moin/BeginnersGuide/NonProgrammers It is recommended that you use

some of these to supplement these lessons in class and for homework.

Teachers Beware: Common Errors

From my experiences of teaching programming with Python from Year 7 to Year 11, I have

encountered some common errors that children experience. Hopefully, if I describe the most

common ones here – it may save you some sweat and tears!

Syntax Errors– These are not unique to Python, but less frequent an occurrence. This can include

capitalising variables in one instance, and not in another – Python will treat 'Lives' as being a

different entity from 'lives'. Wrongly using capital letters for functions; it is the norm in Python for

functions to be written in all lower case, e.g. print, input. Pupils may omit colons, and brackets

when they are required. Some pupils have tried using two single quotes ‘’ instead of a double “.

Indents – Many other languages use curly brackets {} to denote blocks of code. However, Python

uses indents to separate blocks of code.

Saving .py extension – It is a minor frustration that early versions of IDLE (the development

environment) do not automatically append .py to the end of the filename. In the latest version this

has been fixed so that it is not necessary each time when saving a program to add .py at the end of

the filename. When pupils have not done this, one obvious clue is that their code does not feature

syntax colour coding.

Version of Python
From time to time, a new version of the Python language is introduced. There were some fairly

significant changes between Python 2.0 and Python 3.0. At the time of writing, the current version

is 3.3.0 You should download the latest version to ensure compatibility with these materials.

More resources like this are freely available at http://community.computingatschool.org.uk p.2/14

Teaching Programming with Python-Alan O'Donohoe

Introduction

Lesson breakdown:

1. Voice Recognition. Hello World. Syntax errors.

2. Chatbots. Artificial Intelligence. Evaluating expressions

3. Comment code. Maths Quiz. 12 x tables quiz.

4. Add score. Pseudocode. Responsive feedback

5. Making an artificially intelligent Maths game. Assessment

Teacher Notes

In writing these guidance materials, I am fully aware that highly effective teachers develop their

own personal style that they prefer to operate in. When another teacher directs them to follow a list

of explicit instructions in a specific sequence, this can constrain the teacher to an unfamiliar style in

which they are not accustomed and therefore imposes artificial limits on their effectiveness.

To use these guidance materials to their full potential, the reader is advised to blend, remix, edit and

refine these lessons to a style that sits more comfortable. While there is a suggested order to follow,

this does not have to be strictly adhered to, and so the parts of lessons have been designed to be

modular in approach. When there is value to be gained by deviating from these plans, or spending

more time than recommended to enable all learners to progress at an appropriate level of challenge

– please do so rather than slavishly follow these plans.

It is also worth stating that purely following these instructions slavishly will not alone teach pupils

programming using Python. It is important not to see the activities as tasks that need to be

completed, but rather activities to focus learning activities around. An effective, experienced teacher

will identify the learning opportunities within each exercise and activity and exploit the potential for

learning with these and equally will intervene when pupils are not making sufficient learning

progress.

There are 5 lessons worth of content, while some teachers may condense this to 4 lessons others

may expand it to fit 8 lessons, all depending on the ability range of the class and the approach

adopted by the teacher.

Formatting of text

To make this text easy to follow, I have made use of two some simple styles

Interactive – bold and italic when a specific phrase or technical term should be used

>>> a = 1 - the three chevrons, precede functions to be typed into the interpreter

a = 1 – functions with no chevrons are to be typed into the program editor

Why program using Python?

Teachers of computing are incredibly well provided for in that there are currently a fantastic range

of resources for teaching programming. Some such as Codecademy facilitate the learning of

JavaScript by providing a course of tasks and activities to be followed in a strict sequence, while

others like Scratch encourage children to create and share digital stories without needing to worry

too much about syntax. There are many who argue in favour of the potential that Greenfoot Java

offers and Microsoft Visual Basic equally has many faithful fans. There are many arguments for

teaching lower level languages like Java and C#, yet the experiences of many new to these are that

while these languages are suited to programming powerful software applications – they are not the

most accessible to inexperienced programmers.

More resources like this are freely available at http://community.computingatschool.org.uk p.1/14

3

Teaching Programming with Python-Alan O'Donohoe

The major strengths that set Python apart from these, is that Python is a serious software

developer’s language but has the distinct advantage in that it is an ideal language in which to learn.

Python is particularly suited to handling and manipulating large quantities of data. The fact that

Python was chosen for maintaining Google’s search quality and YouTube searches demonstrates

this programming language’s potential to scale to really big projects.

Guido Van Rossum, the pioneer behind Python presented an initiative in 1999 called Computer

Programming for Everybody, in which he defined his goals for Python:

� an easy and intuitive language just as powerful as major competitors

� open source, so anyone can contribute to its development

� code that is as understandable as plain English

� suitability for everyday tasks, allowing for short development times

If you have not read the 'Computer Programming for Everybody' paper, I recommend that you do.

Python is free to download, works on PC, Mac, Linux and Raspberry Pi computers. It seems to be

more forgiving regarding syntax errors than many the vast majority of other languages.

Programming with Python is a feature of many Computing Science degree courses and was

purposely created to facilitate learning to program.

Python is available to download from the Python website http://www.python.org/and documentation

is available here including tutorials http://docs.python.org/py3k/

There is a huge range of materials available online to learn programming with Python on this page

here http://wiki.python.org/moin/BeginnersGuide/NonProgrammers It is recommended that you use

some of these to supplement these lessons in class and for homework.

Teachers Beware: Common Errors

From my experiences of teaching programming with Python from Year 7 to Year 11, I have

encountered some common errors that children experience. Hopefully, if I describe the most

common ones here – it may save you some sweat and tears!

Syntax Errors– These are not unique to Python, but less frequent an occurrence. This can include

capitalising variables in one instance, and not in another – Python will treat 'Lives' as being a

different entity from 'lives'. Wrongly using capital letters for functions; it is the norm in Python for

functions to be written in all lower case, e.g. print, input. Pupils may omit colons, and brackets

when they are required. Some pupils have tried using two single quotes ‘’ instead of a double “.

Indents – Many other languages use curly brackets {} to denote blocks of code. However, Python

uses indents to separate blocks of code.

Saving .py extension – It is a minor frustration that early versions of IDLE (the development

environment) do not automatically append .py to the end of the filename. In the latest version this

has been fixed so that it is not necessary each time when saving a program to add .py at the end of

the filename. When pupils have not done this, one obvious clue is that their code does not feature

syntax colour coding.

Version of Python
From time to time, a new version of the Python language is introduced. There were some fairly

significant changes between Python 2.0 and Python 3.0. At the time of writing, the current version

is 3.3.0 You should download the latest version to ensure compatibility with these materials.

More resources like this are freely available at http://community.computingatschool.org.uk p.2/14

Teaching Programming with Python-Alan O'Donohoe

Lesson 1

Learning Outcomes - By the end of the lesson, pupils should be able to:

Evaluate the effectiveness of Siri on the iPhone and describe

Create a “Hello World” program in the Python

Identify and correct common errors in Python programs

Create, save and test a 'Hello World' program

Part 1

Evaluating the effectiveness of speech recognition technology

Please explain to the class that over the next couple of lessons, they are going to attempt to create a

computer program that can think and reply to questions much like ‘Siri’. First, however – it is

important to have a shared understanding of products like Siri that make use of speech recognition

technology and their limitations. At this point, either arrange for a demonstration of Siri or

equivalent, or select the most appropriate from the suggested YouTube clips.

Leading the class through a think, pair, share activity. You might start by asking pupils to share

their current impressions of Siri technology and how much this adds to the desirability of devices

like iPhones. Alternatively, wait until watching one or more of these short video clips, or other

similar material. Reserve showing ‘Eleventh Floor’ until afterwards for some light-hearted rumour.

Advice - please preview first to judge appropriateness of language used.

Following the video clip(s) ask each pupil to first think of (or list) the advantages and disadvantages

of technology like Siri and how it may advance 10 years from now. After some short thinking time,

ask them to then share & compare their list with their partner, noting differences on their response

sheet. Then forming groups of 4 or more they should collate their collective responses ready to

share these with the rest of the class. To keep to time constraints, each group could report one

feature back to the whole class. There is potential here for a homework related activity in which

pupils write their own summary of the whole class’s thoughts about Siri. This might be an ideal

time to play the ‘Eleventh Floor’ clip which highlights one major criticism of speech recognition

technology.

Resources

Siri iPhone 4s http://youtu.be/5mNcnj2l6RE

Siri Demonstration http://youtu.be/MpjpVAB06O4

Siri talks to Siri http://youtu.be/XBRXA8zmJr8

Search for the “Eleventh Floor” video on YouTube showing two Scots in a lift. Due to copyright, it

may be moved or taken down. It is worth seeking out if you can find it. It's an excellent, humourous

demonstration of 'syntax errors'

Caution: There is some language which may not be suitable for all ages; I recommend you preview

the video first.

Part 2

Using the interactive mode with Python

Before creating an artificial intelligence simulation, some Python fundamentals. For the next

activity, pupils will need to locate and open the Python IDE called 'IDLE' (trivia: named IDLE after

Eric Idle). It might be appropriate to show the class what it looks like.

More resources like this are freely available at http://community.computingatschool.org.uk p.3/14

5

Teaching Programming with Python-Alan O'Donohoe

Explain that there is a tradition when learning a new programming language to first create a Hello

World program. Point out the location of Python’s command prompt, (the triple chevron >>>) and

identify it as such. Ask pupils to type in the following, exactly as it shown here and then press the

return key. Note that functions in Python are always in lower case.

>>> print("Hello World")

The phrase Hello World should appear immediately below the print as shown below

>>> print("Hello World")
Hello World
>>>

Part 3

Understanding what Syntax Errors are and how to avoid them

Now ask pupils to type the following in, exactly as it shown here and then to press the return key.

>>> print(Hello World)

The following error message will appear.
SyntaxError: invalid syntax

Computers are machines that are very literal when it comes to following instructions; humans are

rarely so literal. Computers are not as good dealing with nearly, almost, and not quite in the way

that we humans are. Syntax is used to describe the rules that determine the way that instructions and

commands must be written. Python is reputed to be more forgiving of syntax errors than many other

programming languages, which can make it easier to learn, meaning more time can be spent

creating than debugging. IDLE, the Python IDE has syntax highlighting which automatically

assigns colours to different elements, e.g. the “Hello World” phrase should be green. This should

help spot some simple errors when typing in commands.

To gain a better grasp of syntax errors, ask pupils to first predict what will happen with some of the

following and then try them to see what if the response they get matches up with what they

predicted.

>>> print"Hello World"
>>> print("Hello World");
>>> Print("Hello World")
>>> print("Hel World")
>>> prin(Hello World)

Some will work and others won’t, ask pupils to also find out and try their own variations. Ask

pupils if they can identify a pattern to predict what variations work and which ones do not. Initially,

this might seem a fool’s errand – but some groundwork here will reduce debugging problems later

on if pupils do not have an understanding of the concept of syntax errors.

More resources like this are freely available at http://community.computingatschool.org.uk p.4/14

Teaching Programming with Python-Alan O'Donohoe

Guidance - One important point to highlight is that in the interactive mode, instructions are

executed straight away. It is perhaps worth pointing out as well that ‘print’ in programming usually

means on screen, not on paper.

Part 4

Create, save and test a 'Hello World' program

During this final part of the lesson, pupils will learn how to create, save and execute a “Hello

World” program using Python.

Demonstrate opening a new window, by choosing the File menu in IDLE and selecting New

Window (Ctrl + N). In this file editor mode, it is possible to create programs that the interpreter will

not execute straight away, but only when called or executed. One of the obvious differences

between the ineractive mode and the editor is the lack of a command prompt.

Guidance - It is possible that pupils may confuse the two different windows, so an explanation

would be advised. The analogy of a shopping list may help explain, in the interactibve mode if you

said “Buy milk” it would do it straight away, then “Buy eggs” etc, however with the editor it is

more like making a list of items to buy which only work when you say “run shopping list”. The

advantage of a list is that you can test it, make changes to it, save it for use again.

In the Python programming editor, ask pupils to type the following in, exactly as shown. If they are

not familiar with the underscore key or the double quotation mark they may need guidance. Watch

out for pupils who try to use two single quotation marks instead of the double.

print("Please type your name in")
my_name = input ()
print("Nice to meet you " + my_name)

Then pupils will need to save their program using the filename my_name.py in their My

Documents or other appropriate location. (If not using Python 3.3.0, please make it explicitly clear

that they must always add the .py extension on the end of their filename when saving first time)

Guidance – Some potential problems at this stage are that Python when saving a program will often

default to the Python directory as a location for saving files, so pupils will need to check carefully

rather than simply clicking ‘Save’. Also, in earlier versions, the Python IDLE does not

automatically add the filename extension .py on the end, it is necessary to append this onto the file

name. You will find that many pupils will forget to do this with the following results – their syntax

highlighting in colours will return to all black and to add to their woes, when they try to open a file

it will seem to have disappeared. If this happens they will need to locate the file using Windows

Explorer or looking in their My Documents folder and then renaming it with .py on the end.

Once their program module has been saved, they can run it by either pressing the F5 key or going to

the Run menu and selecting Run Module. If time allows, ask pupils to add more questions into their

my_name program by copying the first lines of code, pasting them and changing the question text.

More resources like this are freely available at http://community.computingatschool.org.uk p.5/14

7

Teaching Programming with Python-Alan O'Donohoe

Lesson 2

Learning Outcomes - By the end of the lesson, pupils should be able to

Describe an experience of Artificial Intelligence from using chatbots

Build the first part of an artificial intelligence program using Python

Use the Python Interpreter as a calculator and explain what an integer is

Part 1

Describe an experience of Artificial Intelligence from using chatbots

To develop a better understanding of some current artificial intelligence technologies like Siri, allow

pupils 5 – 10 minutes to allow them opportunities to try some of these themselves. Warn pupils that

some of these chatbots listed in the resources are experimental models. Provide a list of prompts for

pupils to consider. Then invite pupils to share their answers among themselves or with the rest of

the class.

1. What sorts of questions are the chatbots very good at?

2. What questions do chatbots not answer very well?

3. What process/stages are taking place after the user types in a comment?

4. What tricks does the chatbot use to make it seem real, e.g. artificially intelligent?

Resources

A chatbot that talks with sound http://chaturing.com/artwork/ select the ‘chatbot’ menu

A simple text-only chatbot http://chaturing.com/artwork/chatbot/

iGod http://www.titane.ca/concordia/dfar251/igod/main.html

Rosette http://labs.telltalegames.com/rosette/

A directory of chatbots http://www.chatbots.org/language/english/

Another directory of chatbots http://www.pandorabots.com

Part 2

Building the first part of an artificial intelligence program using Python.

In the last lesson, pupils should have created the program module below and saved it as

my_name.py. This three line phrase can be developed into a very simple Artificial Intelligence

program.

print("Please type your name in")
my_name = input ()
print("Nice to meet you " + my_name)

Considering the kinds of questions and information that people ask about each other when they first

meet, ask pupils to think, pair and share the topics they considered. Some of these may include

where they live, if they have brothers and sisters, what age they are, favourite food etc. At the end

of the activity, each pupil should have a list of question topics.

More resources like this are freely available at http://community.computingatschool.org.uk p.6/14

Teaching Programming with Python-Alan O'Donohoe

A short demonstration may be needed of copying the first 3 lines of script, copying and pasting it

and editing the content to match a new question as in this example. Suggest to pupils that they save

this with the name questions.py – remembering to add the .py filename extension.

print("Please type your name in")
my_name = input ()
print("Nice to meet you " + my_name)
print("So, " + my_name + ", what is your favourite food?")
favourite_food = input ()
print("Ah, your favourite food is " + favourite_food)

Next pupils should consider adding more complex questions into their script. Notice in the 4th line

above it is necessary to have two + signs, one either side of the variable my_name. Common errors

to watch for are pupils not having a complete pair of double quotation marks or adding + signs

between variables and strings.

A variable is a stored value, a string (or text string) is a sequence of characters which may be

words. This would be an ideal opportunity to identify to pupils what a string is and what a variable

is – perhaps ask them to search for definitions and develop their own explanation, or identify them

in their own program module. A string can be stored in a variable.

A suitable challenge to test understanding of this activity would be to create some script at the end

of the program module that summarises e.g. “So Alan, it was lovely to meet you. I now know that

you live in Preston and that your favourite food is Pizza”.

Collaborative Learners - There will be a lot of value in asking pupils to swap places and evaluate

each other’s programs. You could agree awarding of points for levels of challenge, e.g. program that

works =1 point, working program with 3 or more questions =2 points, working program with 3 or

more questions and summary at end =3 points. If you set another related challenge – this would

allow you time to reward those with 3 points for their achievement, identify who is struggling 1

point or less, or ask those with 2 points or more to support pupils with 1 point or less.

Part 3

Using the Python Interpreter as a calculator

Going back now to the imperative mode of the interpreter, we see that Python can function as a

calculator. Ask pupils to solve a series of maths problems using the interpreter, but do not reveal

how to do it straight away.

Activity – Ask pupils to find out how to use Python to work out the answers to these maths

problems. 156 add 567, 132 subtract 46, 256 divided by 8, 389 multiplied by 13. At this early stage,

avoid explaining the keyboard symbols for mathematical operators to see if the class can work

them out for themselves.

The method is shown below, but do not reveal it yet, instead ask the class if they can work it out.

>>> print(2 + 2)

More resources like this are freely available at http://community.computingatschool.org.uk p.7/14

9

Teaching Programming with Python-Alan O'Donohoe

The answers are:

>>> print(156 + 567)
723
>>> print(132 - 46)
86
>>> print(256 / 8)
32.0
>>> print(389 * 13)
5057

Please explain to the class that the mathematical operators in computing are add +, subtract – as

they would expect, but multiply is * and divide is / . This activity goes a long way to explain the

strengths & weaknesses of computers. An effective way to check understanding would be to ask the

class to explain why the following do not work. You might ask them to share this with a partner or

larger group before sharing with the whole class.

>>> what is 2 add 2?
>>> 3 times 6
>>> 24 subtract 3
>>> how many times will 4 fit into 12?

In computing, whole numbers (without decimals) are referred to as integers, this means that while

4.0 is not considered an integer, 4 is. It is possible to store integers into variables.

A short activity to end the lesson could be to assign numbers to variables as in this example below.

>>> pizza = 250
>>> coke = 100
>>> chips = 150

Some interesting expressions can then be evaluated such as:

>>> pizza + chips
400
>>> 2 * pizza
500

The variables could be pupils’ names and ages. Learning this will form the foundation for the next

lesson.

More resources like this are freely available at http://community.computingatschool.org.uk p.8/14

Teaching Programming with Python-Alan O'Donohoe

Lesson 3

Learning Outcomes - By the end of the lesson, pupils should be able to

Demonstrate and explain the practice of commenting their code

Create a simple maths test, explain the need to convert a string to an integer

Make use of ‘if’ statements to create a 12 times table test

Recap

In our last lesson pupils used the script below to create the foundations of an artificial intelligence

program. They should have managed to add some questions of their own.

print("Please type your name in")
my_name = input ()
print("Nice to meet you " + my_name)

A useful way to go back and check pupils’ understanding of all this would be (with the minimum of

help) to ask all the class to locate and open their questions.py program and add another question,

this time asking the user to name a place they have been on their holidays and then respond with an

answer using the name of the holiday location, e.g. “Hmmm...” + holiday_location + “ sounds a

like a nice place to go”

Comment Your Code

This is now a good time to introduce the practice of commenting code to the class. Comments are

often added to computer programs to allow people to understand the intentions of the person who

created the code. The Python interpreter ignores the comments completely, so syntax is not a

problem. In practise, it is not necessary to comment every line/section – only where it is not obvious

what is going on. However, as the class have probably not experienced commenting before, we will

apply some comments to the simple code we have written so far using the hash key (#). You will

notice that when you use the hash key in the program editor, the text changes to red to indicate the

use of commenting. Comments can be used for sections, or in-line as shown below.

This program finds out the user's name

print("Please type your name in") #prints message to user
my_name = input () #stores user’s name in a variable
print("Nice to meet you " + my_name) #displays message

Activity – Ask pupils to add comments to all their lines of code. Some questions for pupils to

consider. Try using the think – pair – share approach with these questions.

1. How could you add some information about the program, creator, date etc.?

Answer- add a top line comment with name, date etc.

2. Is it necessary to comment on every single line?

Answer- Only comment when it is not clear to another person

3. If the interpreter ignores everything after the #, how else could this be useful?

Answer- You can use # to ‘comment out’ sections of code that are not working to help with

debugging.

More resources like this are freely available at http://community.computingatschool.org.uk p.9/14

Teaching Programming with Python-Alan O'Donohoe

Creating a maths quiz

There is a lot of value in creating games when learning how to program. This part of the lesson

starts with a simple question script that when understood can be used to build a more sophisticated

game. Start by asking pupils to open a new program editor window, we do this in the interpreter by

selecting File – New Window. Then ask them to create the script below, exactly as it appears.

Please pay particular attention to the use of spaces, indents and colons. Some programming

languages, Java for example make extensive use of { } brackets to mark blocks or phrases of code.

Python uses indents instead to mark out separate blocks. So, it is crucial that the indents are used

appropriately.

Ask pupils to save this as maths_question.py – if they all use the same name, it will make it easier

in future lessons to retrieve their work.

print("What is 2 + 2?")
answer = input ()
answer = int(answer)

if answer == 4:
 print("Well done")

else:
 print("Sorry the answer was 4")

Some will complete this more quickly than others, so ask them to add more questions to their game

while waiting. Once the class have all tested their games, debugged them and run them successfully,

we need to see if the pupils can explain some of the new things in this program.

1. answer = int(answer) - thinking back to use of integers last lesson, what does this do

and what does ‘int’ mean? Answer- this converts a text string into a number or integer. If

we did not convert it to an integer, we could not compare it to another integer, the answer 4.

2. If answer = = 4: - What does the ‘= =’ translate to in plain English Answer- this means

‘equal’ to, as “in is it equal to?”

3. What does the ‘else’ translate to in plain English? Answer-this translates as ‘or else’

4. Why are the indents necessary after the if and else statements? Answer- this means

follow these instructions if the statement above is true

5. What happens if the colons are not there after the 4 or else? You get a Syntax Error

Part 3

To check pupils’ understanding of everything learnt so far, ask pupils to create a test that will check

the user’s knowledge of the 12 times multiplication table, with between 4 and 12 questions. Explain

that they must save it with the name 12_times_table.py and it must include a header comment, with

description, name of creator and date. The program must feature some other use of comments and

must work successfully.

Although there is an assessment piece being set in the 5th lesson, you might decide that this task be

used to provide the teacher with some evidence for assessment of the last three lessons. If this is

likely to be used as a formal assessment piece I suggest you share some assessment criteria with

pupils before they start.

More resources like this are freely available at http://community.computingatschool.org.uk p.10/14

11

Teaching Programming with Python-Alan O'Donohoe

Creating a maths quiz

There is a lot of value in creating games when learning how to program. This part of the lesson

starts with a simple question script that when understood can be used to build a more sophisticated

game. Start by asking pupils to open a new program editor window, we do this in the interpreter by

selecting File – New Window. Then ask them to create the script below, exactly as it appears.

Please pay particular attention to the use of spaces, indents and colons. Some programming

languages, Java for example make extensive use of { } brackets to mark blocks or phrases of code.

Python uses indents instead to mark out separate blocks. So, it is crucial that the indents are used

appropriately.

Ask pupils to save this as maths_question.py – if they all use the same name, it will make it easier

in future lessons to retrieve their work.

print("What is 2 + 2?")
answer = input ()
answer = int(answer)

if answer == 4:
 print("Well done")

else:
 print("Sorry the answer was 4")

Some will complete this more quickly than others, so ask them to add more questions to their game

while waiting. Once the class have all tested their games, debugged them and run them successfully,

we need to see if the pupils can explain some of the new things in this program.

1. answer = int(answer) - thinking back to use of integers last lesson, what does this do

and what does ‘int’ mean? Answer- this converts a text string into a number or integer. If

we did not convert it to an integer, we could not compare it to another integer, the answer 4.

2. If answer = = 4: - What does the ‘= =’ translate to in plain English Answer- this means

‘equal’ to, as “in is it equal to?”

3. What does the ‘else’ translate to in plain English? Answer-this translates as ‘or else’

4. Why are the indents necessary after the if and else statements? Answer- this means

follow these instructions if the statement above is true

5. What happens if the colons are not there after the 4 or else? You get a Syntax Error

Part 3

To check pupils’ understanding of everything learnt so far, ask pupils to create a test that will check

the user’s knowledge of the 12 times multiplication table, with between 4 and 12 questions. Explain

that they must save it with the name 12_times_table.py and it must include a header comment, with

description, name of creator and date. The program must feature some other use of comments and

must work successfully.

Although there is an assessment piece being set in the 5th lesson, you might decide that this task be

used to provide the teacher with some evidence for assessment of the last three lessons. If this is

likely to be used as a formal assessment piece I suggest you share some assessment criteria with

pupils before they start.

More resources like this are freely available at http://community.computingatschool.org.uk p.10/14

Teaching Programming with Python-Alan O'Donohoe

Lesson 4

Learning Outcomes - By the end of the lesson, pupils should be able to

Demonstrate use of variables to add score to their game

Designing a coding solution using Pseudocode

Add responsive score feedback to their game

Part1

Demonstrating use of variables to add score to their game

In the last lesson, pupils used the following script to create the foundation of a maths quiz and then

developed it into a 12 times table test.

print("What is 2 + 2?")
answer = input ()
answer = int(answer)

if answer == 4:
 print("Well done")

else:
 print("Sorry the answer was 4")

With just a few lines of extra code, it should be possible to maintain a score throughout a game and

then give the user some feedback at the end. There may be some value in asking pupils to type the

code in again from scratch, getting them used to practice of typing in code. However, if pushed for

time – you could just ask them to open their maths_question.py

Then, ask the class to modify their script thus, first line and last line. Check that pupils understand

the concept of score now equals itself plus one.

score = 0 #this defines variable score, and sets it as zero
print("What is 2 + 2?")
answer = input ()
answer = int(answer)

if answer == 4:
 print("Well done")
 score = score + 1 #this increases score by one

else:
 print("Sorry the answer was 4")

In addition, pupils will need to add a facility to display the score at the end of the game (print score)

allow them to decide how to do this, or identify it is missing. A simple solution to print the score at

the end of the game would be to add this line to the bottom of their program, with no indent;

print(score)

More resources like this are freely available at http://community.computingatschool.org.uk p.11/14

13

Teaching Programming with Python-Alan O'Donohoe

However, a more sophisticated way to do this would be to add the following.

print("Your score was " + str(score))
A worthwhile exercise would be to ask pupils why it is necessary to write str(score) or ask them to

try the following

print("Your score was " + score)

They should find that, because the score variable is an integer, Python cannot simply add it on to the

end of a string. So the str() function temporarily converts to a string for the purposes of this line.

Python cannot add strings and integers in their raw form together when printing.

As an extension to this, ask pupils to locate and open their 12_times_table.py program from last

lesson and add a scoring feature to each question. Finally ask them to add a line that prints the score

at the end. You could suggest that some ‘mean people’ might also deduct a point for every wrong

answer and add this to their script.

Part2

Planning a coding solution using Pseudocode

Rather than simply report the score that the user has achieved, it would seem more impressive to

give an appropriate response based on how high or low the user score was. Before we look at how

to code this solution, now would be a good time to understand what Pseudocode is.

To introduce the concept of Pseudocode to the class, you might ask them to think, pair and share

their own explanations first of all to help you establish what they think Pseudocode might be.

Alternatively, you might simply ask them to find out using an internet search.

Definition: Pseudocode is a name given to a technique for designing and planning a coding solution

that does not involve using the actual code or programming language. Indeed, while aspects of it

may look like a programming language to a non-programmer – there may be too many syntax errors

for it to actually work. The aim is to enable someone to code a solution without being distracted by

the actual syntax and therefore think a little more creatively. To help pupils gain a better

understanding of the principle of Pseudocode, describe how one of the programs from Lesson 2

functioned, and without showing them - ask them to write on paper (with a partner) the Pseudocode

for:

print("Please type your name in")
my_name = input ()
print("Nice to meet you " + my_name)

The pupils’ Pseudocode solutions could look something like this:

print “type your name in”

input user name

print “nice to meet you” + user name

If they have not quite grasped the concept of pseudocoded solutions yet, try challenging them with

some of the other blocks of code they have created, e.g. the block of code that asks the question

More resources like this are freely available at http://community.computingatschool.org.uk p.12/14

Teaching Programming with Python-Alan O'Donohoe

“What is 2 + 2?” and then checks for the correct

the answer. It may be necessary to work through a solution with them until it makes sense.

Part 3

Add responsive score feedback to their game, i.e. Score greater than, less than

Rather than simply report the score that the user has achieved, it would seem more impressive to

give an appropriate feedback response based on how high or low the user score is at the end of the

game.

Ask pupils working in pairs to Pseudocode a solution to this. It could work with two simple

outcomes. If it is possible to score a maximum of 3, you could have a specific response for a score

of 2 or more out of 3 and another response for 1 or 0.

Once pupils have written their Pseudocode solutions, ask them to try writing them in Python. It is

inevitable that some pupils’ solutions will fail, this is a good outcome – since there is so much more

potential to be gained from fixing a failed solution than a solution that works first time.

This solution below, sets the score to a fixed value for the purposes of testing. If pupils are really

struggling to make their solution work, you may choose to share part or all of this solution with

them to help.

score = 0
if score > 2:
 print("Well done!")
else:
 print("Oh dear")

Once the actual mechanism of the solution is working, encourage your pupils to modify the

feedback messages to a more human response, e.g. “Well done, you scored 3 out 3 – very clever”,

“Oh dear, you only scored 1 out of 3 – why not try again to improve”

More resources like this are freely available at http://community.computingatschool.org.uk p.13/14

15

Teaching Programming with Python-Alan O'Donohoe

Lesson 5 – Assessment

Learning Outcomes - By the end of the lesson, pupils should be able to

Design and code their own maths game based on the learning from the previous 4 lessons

The task

Starting with a blank file, you need to create your own number game using Python. You should add

an appropriate amount of comments to your game including a header with your name, the title and a

brief description of how to play the game. You should also add in line comments to explain

particular parts of the program code. Your game should include at least 5 questions (change as

appropriate) and you need to decide what the actual questions are about and the level of difficulty.

Examples

The teacher may give examples of the questions, apart from some obvious maths questions – other

examples may include:

How many seconds are there in 1 hour? How many days are there in a leap year?

If a triangle has two angles at 45 degrees, what will the remaining angle be?

If a = 2b -5 and b is 6, what is a? What is the minimum legal age to vote in the UK?

What is 10010001 converted to denary?

Success Criteria:

All of the class must

Create a game that works and save it.

Use enough comments to explain how the game works

Add a scoring feature to the game.

Some of the class may

Ask the user some questions at the beginning of the game, e.g. user’s name and make use of it

throughout the game.

Add a function to report the score after each question.

Include some responsive feedback at the end of the game specific to the score

In a comment describe a feature to be included in a future version of the game

A few might

Include a larger set of questions that increase with difficulty as the game progresses

Allow the user to try again on a wrong answer, but award a reduced score for a second try

Give the user some feedback mid way through the game as encouragement.

Add some comments explaining how they could add extra features to the game

Teachers are encouraged to modify the success criteria above to suit the ability of their class.

I would also suggest that you use some peer marking initially after completion of this assignment to

give the class some prompt feedback. You might do this by working through one example on a

projector/display and explain how marks/grades are awarded. Then ask pupils to swap seating and

grade each others’ games. It would be a good idea to let pupils improve their games once they have

received some feedback from their peers.

More resources like this are freely available at http://community.computingatschool.org.uk p.14/14

@exafoundation | www.exa.foundation | info@exa.foundation

